NucleI API

Global functions

Variables

AVOGADRO()

float: Avogadro’s number (particles/mol) = 6.022e23

BOLTZMANN()

float: Boltzmann constant (J/K) = 1.38e-23

C_to_K(celsius)

Shortcut to `CONST.C_to_K`

Converts from degrees Celsius to Kelvin.

Return type:

float

Parameters:

celsius (float)

DeviceSettings()

_DeviceSettings: Currently applicable hardware settings of the device.

The fields can be modified in runtime and changes saved via UI.save() Changing the fields’ values will result in the actual change of the configuration.

LastSignal()

_Signal | None: An instance of the last received NMR signal.

Only considers those received from the device internally.

LastSpectrum()

_NMRSpectrum | None: An instance of the last received NMR spectrum.

Only considers those received from the device internally.

SampleInfo()

_SampleInfo: Settings/Information about the currently active sample.

The fields can be modified in runtime and changes saved via UI.save().

WATER_DYNAMIC_VISCOSITY()

float: Dynamic viscosity of water at room temperature (Pa*s) = 8.9e-4

Acquisition

disable_progress_bar()

Shortcut to `SCAN.disable_progress_bar`

Disabled any updates to the UI progress bar.

Return type:

Any

enable_progress_bar()

Shortcut to `SCAN.enable_progress_bar`

Enables all updates to the UI progress bar. Counteracts disable_progress_bar.

Return type:

Any

estimate_duration(sequence)

Shortcut to `SCAN.estimate_duration`

Estimates the duration of the sequence in float seconds.

Parameters:

sequence (list[HardwareEvent | list[HardwareEvent]]) – Sequence to estimate the duration of.

Return type:

float

Returns:

Estimate of the sequence duration including the repetition delay.

no_finish_run()

Shortcut to `SCAN.no_finish_run`

A context manager to suppress the internal signals to finish an execution of an experiment.

Useful for executing nested or sequential sub-programs.

Return type:

Generator[None, Any, None]

offset_progress_bar(step_offset, total_offset)

Shortcut to `SCAN.offset_progress_bar`

A context manager to temporarily offset the UI progress bar.

Return type:

Generator[None, Any, None]

Parameters:
  • step_offset (int)

  • total_offset (int)

pause_progress_bar()

Shortcut to `SCAN.pause_progress_bar`

A context manager to temporarily pause the advance of the UI progress bar.

Return type:

Generator[None, Any, None]

report_progress(step, total, step_time)

Shortcut to `SCAN.report_progress`

Reports the experiment progress to the frontend.

Parameters:
  • step (int) – Current step of the experiment.

  • total (int) – Total number of steps in the experiment.

  • step_time (float | None) – How much time the current step requires. Estimated if None. Default: None.

Return type:

None

run_sequence(sequence, seq_null, phase_cycle, n_scans, report, dry_run)

Shortcut to `SCAN.run_sequence`

Runs a sequence and calculates the signals and spectra.

Notes

  • If phase_cycle=True, the n_scans must be a multiple of 4.

Parameters:
  • sequence (list[HardwareEvent | list[HardwareEvent]]) – Sequence to execute.

  • seq_null (float | None) – Sequence null time point. Default: None.

  • phase_cycle (bool) – Whether to enable phase cycle. Default: False.

  • n_scans (int) – Number of scans to perform. Default: 1.

  • report (bool) – Whether to report the progress to the frontend. Default: True.

  • dry_run (bool) – Whether to suspend any other callbacks. Default: False.

Return type:

tuple[Signal | list[Signal], NMRSpectrum | list[NMRSpectrum]]

Returns:

A signal and it’s spectrum if n_scans=1, lists of such for each scan otherwise.

Sequence Definition

ADC(duration_us)

Shortcut to `SEQ.ADC`

Hardware ADC command. Turns the ADC on for a specified amount of time.

Parameters:

duration_us (float) – Duration of the recording in us.

Return type:

HardwareEvent

Cycle(n_repeats, sub_sequence)

Shortcut to `SEQ.Cycle`

Hardware CYCLE command. Repeats a sub-sequence N times.

Parameters:
  • n_repeats (int) – How many times to repeat.

  • sub_sequence (list[HardwareEvent]) – Sub-sequence to repeat.

Return type:

list[HardwareEvent]

Pulse(phase, angle)

Shortcut to `SEQ.Pulse`

Hardware PULSE command.

Parameters:
  • phase (Literal['x+', 'y+', 'x-', 'y-']) – Phase of the pulse.

  • angle (Union[Literal[90, 180, 270, 360], float]) – Angle of the pulse. If not 90, 180, 270, or 360, treated as a duration of the pulse in us.

Return type:

HardwareEvent

Silence(duration_us)

Shortcut to `SEQ.Silence`

Hardware SILENCE command. “Sleeps” for the specified amount of time.

Parameters:

duration_us (float | None) – How long to sleep for in us. Uses the ringing time if None. Default: None.

Return type:

HardwareEvent

Wobble(acq_time, tau_2, tau_1)

Shortcut to `SEQ.Wobble`

Preset WOBBLE sub-sequence.

Equivalent to:

Pulse(x+, 180) -> Silence(TAU_2) -> Pulse(x+, 90) -> Silence(TAU_1) -> ADC(acq_time) -> Silence(TAU_1).

Parameters:
  • acq_time (float) – Acquisition time (ADC).

  • tau_2 (float) – Silence time in us between the pulses.

  • tau_1 (float | None) – Silence time in us after the pulses and ADC. Uses the ringing time if None. Default: None.

Return type:

list[HardwareEvent]

scheduled_iter(interval_minutes, duration_hours)

Shortcut to `SEQ.scheduled_iter`

An iterator that executes subsequent iterations every N minutes for M hours.

Important: The interval doesn’t “add” N minutes after the last iteration, it will only start the next one not earlier than N minutes after the last one.

Parameters:
  • interval_minutes (float) – Time spacing between iterations.

  • duration_hours (float) – For how many hours to repeat. Doesn’t abrupt the last iteration.

Return type:

Iterator[float]

User Interface

annotate(data, name, kind)

Shortcut to `UI.annotate`

Plots a signal/spectrum as an annotation.

Notes

  • If kind=”auto”, the data must be of type Signal or NMRspectrum.

Otherwise the appropriate kind must be provided manually.

Parameters:
  • data (Signal | NMRSpectrum | ndarray | tuple[ndarray, ndarray]) – Signal or spectrum to plot.

  • name (str | None) – Title of the annotation. Default: None.

  • kind (Literal['signal', 'spectrum', 'auto']) – Whether the data should be treated as a signal or as a spectrum. Default: “auto”.

Return type:

None

clear_annotations(scope)

Shortcut to `UI.clear_annotations`

Clears all annotations.

Parameters:

scope (Literal['all', 'signal', 'spectrum']) – Whether to clean all, signal-only, or spectrum-only annotations.

Return type:

None

plot(data, kind, save_as_output)

Shortcut to `UI.plot`

Plots a signal/spectrum in the UI.

Notes

  • If kind=”auto”, the data must be of type Signal or NMRspectrum.

Otherwise the appropriate kind must be provided manually.

Parameters:
  • data (Signal | NMRSpectrum | ndarray | tuple[ndarray, ndarray]) – Signal or spectrum to plot.

  • kind (Literal['signal', 'spectrum', 'auto']) – Whether the data should be treated as a signal or as a spectrum. Default: “auto”.

  • save_as_output (bool) – Whether to push the plotted data to the respective stack. Default: True.

Return type:

None

Namespaces

class CONST

Bases: object

C_to_K()

Converts from degrees Celsius to Kelvin.

Return type:

float

Parameters:

celsius (float)

BOLTZMANN: float = Ellipsis

Boltzmann constant (J/K) = 1.38e-23

Type:

float

AVOGADRO: float = Ellipsis

Avogadro’s number (particles/mol) = 6.022e23

Type:

float

WATER_DYNAMIC_VISCOSITY: float = Ellipsis

Dynamic viscosity of water at room temperature (Pa*s) = 8.9e-4

Type:

float

DeviceSettings: DeviceSettings = Ellipsis

Currently applicable hardware settings of the device.

The fields can be modified in runtime and changes saved via UI.save() Changing the fields’ values will result in the actual change of the configuration.

Type:

_DeviceSettings

SampleInfo: SampleInfo = Ellipsis

Settings/Information about the currently active sample.

The fields can be modified in runtime and changes saved via UI.save().

Type:

_SampleInfo

LastSignal: Signal | None = Ellipsis

An instance of the last received NMR signal.

Only considers those received from the device internally.

Type:

_Signal | None

LastSpectrum: NMRSpectrum | None = Ellipsis

An instance of the last received NMR spectrum.

Only considers those received from the device internally.

Type:

_NMRSpectrum | None

Signal: type[Signal] = Ellipsis

A shortcut for tqt_nmr.Signal

Type:

type[_Signal]

Spectrum: type[NMRSpectrum] = Ellipsis

A shortcut for tqt_nmr.NMRSpectrum

Type:

type[_NMRSpectrum]

NMRSpectrum: type[NMRSpectrum] = Ellipsis

A shortcut for tqt_nmr.NMRSpectrum

Type:

type[_NMRSpectrum]

NMRSpectraCollection: type[NMRSpectraCollection] = Ellipsis

A shortcut for tqt_nmr.NMRSpectraCollection

Type:

type[_NMRSpectraCollection]

np: <module 'numpy' from 'C:\Users\WAR\.conda\envs\Nuclei\Lib\site-packages\numpy\__init__.py'> = Ellipsis

A shortcut for import numpy as np

Type:

_np

tqt_nmr: <module 'tqt_nmr' from 'C:\TQT-DEV\Nuclei-deploy\tqt_nmr\tqt_nmr\__init__.py'> = Ellipsis

A shortcut for import tqt_nmr

Type:

_tqt_nmr

class DEVICE

Bases: object

get_temp()

Fetches the current temperature in degrees Celsius of the on-board sensor.

Return type:

float

get_target_temp()

Fetches the set target temperature in degrees Celsius of the on-board sensor.

Return type:

float

set_target_temp()

Updates the target temperature of the on-board sensor.

Return type:

None

Parameters:

temp_c (float)

class DISPERSION

Bases: object

optimize_t2_parameters(verbose)

Finds optimal experimental parameters for conducting CPMG (Carr-Purcell) NMR pulse sequence at benchtop NMR Relaxometer 20MHz.

** CURRENTLY IN ALPHA **

Task: Find triple (n_echo, decimation, acq) while echo_t=CONSTANT or quadruple (n_echo, decimation, echo_t, acq) of parameters that matches the overall length of CPMG pulse sequence (CPMG_period [us]) to full exponential decay of NMR signal (~exp(-t/T2)) i.e. equals to 5*T2 [us]

Solution constrains arise from the particular type of NMR controlling board e.g.
  • maximum number of ADC points for one continuos sample = 25000 points;

  • ADC dwell time = 0.5 us [microseconds]

  • maximum number of various commands in one pulse sequence (Pulse, Silence, Cycle, ADC) = 256 items

  • minimal echo_t = 70 us

CPMG sequence: p_90 - [us] length 90-degree NMR pulse p_180 - [us] length 180-degree NMR pulse et = echo_t / decimation decimation_sequence = [[Pulse(“y-”, 180), Silence(et - p_180)] for _ in range(max(0, decimation - 1))] sequence = [Silence(100), Pulse(“x+”, 90), Silence(et / 2 - p_90 / 2 - p_180 / 2), Cycle( n_echo, [Pulse(“y-”, 180), Silence(et / 2 - p_180 / 2 - acq / 2), Silence(et / 2 - p_180 / 2 - acq / 2), *[action for step in decimation_sequence for action in step] ] ), Silence(13)]

Parameters:
  • config (DispersionSettings) – DispersionSettings - anticipated_ms: [ms] expected or estimated T2 relaxation time of the test substance - n_echo: [int] number of 180-degree NMR pulses in CPMG sequence - decimation: [int] number of dummy 180-degree NMR pulses in CPMG sequence (p180 skips) - echo_t_us: [us] distance between 180-degree NMR pulses after which the NMR signal is recorded - acq_us: [us] amount of time for ADC recording of each not dummy 180-degree NMR pulse

  • verbose (bool) – Whether to print extended logs.

Returns:

found value of n_echo after optimization decimation_it: found value of decimation after optimization echo_t_it: found value of echo_t after optimization or original echo_t || fixed value from list acq_it: found value of acq after optimization

Return type:

n_echo_it

optimize_dispersion_parameters(verbose)

Finds the optimal experimental parameters for conducting CPMG (Carr-Purcell) NMR pulse sequence at benchtop NMR Relaxometer 20MHz.

** CURRENTLY IN ALPHA **

Task: Find triple (n_echo, decimation, acq) while echo_t=CONSTANT or quadruple (n_echo, decimation, echo_t, acq) of parameters that matches the overall length of CPMG pulse sequence (CPMG_period [us]) to full exponential decay of NMR signal (~exp(-t/T2)) i.e. equals to 5*T2 [us]

Solution constrains arise from the particular type of NMR controlling board e.g. - maximum number of ADC points for one continuos sample = 25000 points; - ADC dwell time = 0.5 us [microseconds] - maximum number of various commands in one pulse sequence (Pulse, Silence, Cycle, ADC) = 256 items - minimal echo_t = 70 us

CPMG sequence: p_90 - [us] length 90-degree NMR pulse p_180 - [us] length 180-degree NMR pulse et = echo_t / decimation decimation_sequence = [[Pulse(“y-”, 180), Silence(et - p_180)] for _ in range(max(0, decimation - 1))] sequence = [Silence(100), Pulse(“x+”, 90), Silence(et / 2 - p_90 / 2 - p_180 / 2), Cycle( n_echo, [Pulse(“y-”, 180), Silence(et / 2 - p_180 / 2 - acq / 2), Silence(et / 2 - p_180 / 2 - acq / 2), *[action for step in decimation_sequence for action in step] ] ), Silence(13)]

Parameters:
  • config (DispersionSettings) – DispersionSettings - anticipated_ms: [ms] expected or estimated T2 relaxation time of the test substance - n_echo: [int] number of 180-degree NMR pulses in CPMG sequence - decimation: [int] number of dummy 180-degree NMR pulses in CPMG sequence (p180 skips) - echo_t_us: [us] distance between 180-degree NMR pulses after which the NMR signal is recorded - acq_us: [us] amount of time for ADC recording of each not dummy 180-degree NMR pulse

  • verbose (bool) – Whether to print extended logs.

Returns:

n_echo: found value of n_echo after optimization decimation: found value of decimation after optimization echo_t: found value of echo_t after optimization or original echo_t || fixed value from list acq: found value of acq after optimization

Return type:

List of optimized scan points in the form of list[T2Optimization]

run_dispersion(points, model, verbose, **kwargs)

Executes a dispersion experiment given the config and optimized points (see optimize_dispersion_parameters).

** CURRENTLY IN ALPHA **

Parameters:
  • config (DispersionSettings | None) – DispersionSettings (optional) - anticipated_ms: [ms] expected or estimated T2 relaxation time of the test substance - n_echo: [int] number of 180-degree NMR pulses in CPMG sequence - decimation: [int] number of dummy 180-degree NMR pulses in CPMG sequence (p180 skips) - echo_t_us: [us] distance between 180-degree NMR pulses after which the NMR signal is recorded - acq_us: [us] amount of time for ADC recording of each not dummy 180-degree NMR pulse

  • points (list[T2Optimization] | None) – Optimized sampling points provided by optimize_dispersion_parameters (optional). Default: None.

  • model (Optional[Callable[[array], array]]) – Mathematic model to fit. Default: ModelRelaxationEff_Double.

  • verbose (bool) – Whether to print extended logs. Default: False.

  • kwargs (Any)

Return type:

tuple[Signal, Signal, tuple[float, ...]]

Returns:

  • Fitted R2 signal (using the model provided),

  • Fitted R2-eff signal (using the model provided),

  • Optimized parameters of the model.

run_nano_particles(interval_minutes, duration_hours, molar_mass_g_mol, **kwargs)

Executes the non-particles experiment.

** CURRENTLY IN ALPHA **

Parameters:
  • config (DispersionSettings) – DispersionSettings (optional) - anticipated_ms: [ms] expected or estimated T2 relaxation time of the test substance - n_echo: [int] number of 180-degree NMR pulses in CPMG sequence - decimation: [int] number of dummy 180-degree NMR pulses in CPMG sequence (p180 skips) - echo_t_us: [us] distance between 180-degree NMR pulses after which the NMR signal is recorded - acq_us: [us] amount of time for ADC recording of each not dummy 180-degree NMR pulse

  • interval_minutes (float) – Time to wait between sampling runs.

  • duration_hours (float) – Total duration of the experiment.

  • molar_mass_g_mol – Molar mass (g/mol) of the sample. Default: 241.8.

  • kwargs (Any)

Return type:

Any

Returns:

  • Time points when the measurements were taken,

  • List of fitted R2 signals (for each run),

  • List of fitted R2-eff signals (for each run),

  • List of R2 optimization parameters (for each run).

class IO

Bases: object

save(spectrum)

Saves the signal and/or the spectrum as a last received scan.

Parameters:
  • signal (Signal | None) – Signal to save. Takes the latest one if None. Default: None.

  • spectrum (NMRSpectrum | None) – Spectrum to save. Takes the latest one if None. Default: None.

Return type:

Any

save_as_new(signal, spectrum)

Saves the signal and/or the spectrum as a new scan.

Parameters:
  • name (str | None) – Name of the recording. Uses the current date & time if None.

  • signal (Signal | None) – Signal to save. Takes the latest one if None. Default: None.

  • spectrum (NMRSpectrum | None) – Spectrum to save. Takes the latest one if None. Default: None.

Return type:

Any

add_metadata(value)

Adds arbitrary user-defined metadata to the sample record.

Parameters:
  • name (str) – Key of the metadata entry.

  • value – Value of the entry.

Return type:

None

format_timestamp(fmt)

Formats a UNIX-style timestamp into an ISO format.

Return type:

str

Parameters:
  • timestamp (float)

  • fmt (str)

beep(theme)

Plays an audio signal (“beep”). Can be used to indicate an important event or an error.

Parameters:
  • mode (Literal['success', 'warning', 'error', 'info']) – The tone of the signal. Default: “info”.

  • theme (Literal['big-sur', 'chime', 'mario', 'material', 'pokemon', 'sonic', 'zelda']) – Variation of the signal. Default: “material”.

Return type:

Any

class FIT

Bases: object

fit_model(model, initial_guess, loss, method, **kwargs)

Fits a mathematical model to given data.

Parameters:
  • data (Signal | NMRSpectrum | tuple[array, array]) – Data to fit to. Signal, spectrum, or a custom pair of x-y sequences.

  • model (Callable[[array], array]) – A callable model to fit.

  • initial_guess (tuple[float, ...] | None) – Initial guess for all the model’s variables. [1, 1, …, 1] if None. Default: None.

  • loss (Callable[[array, array], float]) – Loss function to evaluate the fitting with. Default: MSE.

  • method – Fitting method. Default: “Nelder-Mead”.

  • kwargs (Any)

Returns:

  • [0]: Fitted model parameters in the order of appearance.

  • [1]: Final fit loss.

Return type:

Tuple of form

ModelExponentialDecay()

Exponential decay model.

Math equivalent: a * exp(-(x + x0) / b) + c, where a, x0, b, c are fittable variables.

Parameters:

num_curves (int) – Number of summed exponents to fit. Default: 1.

Return type:

Callable[[array], array]

ModelRelaxationEff_Norris()
Return type:

Callable[[array], array]

Parameters:

num_curves (int)

ModelRelaxationEff_Tollinger()

Tollinger et. al J Am Chem Soc. 2001 123 11341

Curve is independent of k_BA. We can only extract k_AB and ∆ω2. p_B = k_AB/k_ex; p_A = k_BA/k_ex.

Return type:

Callable[[array], array]

Parameters:

num_curves (int)

ModelRelaxationEff_SDR()
Return type:

Callable[[array], array]

Parameters:

num_curves (int)

For MNP solutions, the Static Dephasing Regime (SDR) model is typically used when the particles

are relatively large and their magnetic moments are strong enough that the diffusion of water molecules around them does not significantly average out the local magnetic field inhomogeneities they produce.

The Motional Averaging Regime (MAR) model can be more suitable when the nano-particles are smaller or when the water molecules diffuse fast enough to sample the magnetic field inhomogeneities, leading to motional averaging effects.

### Static Dephasing Regime (SDR) Model

The effective transverse relaxation rate ( R_{2, ext{eff}} ) (which is the inverse of ( T_2 )) in the SDR can be described by:

[ R_{2, ext{eff}} = R_{2,0} + Delta R_2 ]

where:

  • ( R_{2,0} ): The intrinsic transverse relaxation rate of the solvent (water).

  • ( Delta R_2 ): The contribution to the transverse relaxation rate due to

the presence of magnetic nano-particles.

The additional relaxation rate ( Delta R_2 ) in the SDR can be approximated by:

[ Delta R_2 =

rac{2}{3} gamma^2 G^2 au_D ]

Where:
  • ( gamma ): The gyromagnetic ratio of the water protons.

  • ( G ): The strength of the local magnetic field gradient created by the magnetic nano-particles.

  • ( au_D ): The diffusion time of water molecules around the nano-particles.

ModelRelaxationEff_Triple()
Return type:

Callable[[array], array]

Parameters:

num_curves (int)

ModelRelaxationEff_Double()
Return type:

Callable[[array], array]

Parameters:

num_curves (int)

class SCAN

Bases: object

report_progress(total, step_time)

Reports the experiment progress to the frontend.

Parameters:
  • step (int) – Current step of the experiment.

  • total (int) – Total number of steps in the experiment.

  • step_time (float | None) – How much time the current step requires. Estimated if None. Default: None.

Return type:

None

no_finish_run()

A context manager to suppress the internal signals to finish an execution of an experiment.

Useful for executing nested or sequential sub-programs.

Return type:

Generator[None, Any, None]

pause_progress_bar()

A context manager to temporarily pause the advance of the UI progress bar.

Return type:

Generator[None, Any, None]

offset_progress_bar(total_offset)

A context manager to temporarily offset the UI progress bar.

Return type:

Generator[None, Any, None]

Parameters:
  • step_offset (int)

  • total_offset (int)

disable_progress_bar()

Disabled any updates to the UI progress bar.

Return type:

Any

enable_progress_bar()

Enables all updates to the UI progress bar. Counteracts disable_progress_bar.

Return type:

Any

estimate_duration()

Estimates the duration of the sequence in float seconds.

Parameters:

sequence (list[HardwareEvent | list[HardwareEvent]]) – Sequence to estimate the duration of.

Return type:

float

Returns:

Estimate of the sequence duration including the repetition delay.

run_sequence(seq_null, phase_cycle, n_scans, report, dry_run)

Runs a sequence and calculates the signals and spectra.

Notes

  • If phase_cycle=True, the n_scans must be a multiple of 4.

Parameters:
  • sequence (list[HardwareEvent | list[HardwareEvent]]) – Sequence to execute.

  • seq_null (float | None) – Sequence null time point. Default: None.

  • phase_cycle (bool) – Whether to enable phase cycle. Default: False.

  • n_scans (int) – Number of scans to perform. Default: 1.

  • report (bool) – Whether to report the progress to the frontend. Default: True.

  • dry_run (bool) – Whether to suspend any other callbacks. Default: False.

Return type:

tuple[Signal | list[Signal], NMRSpectrum | list[NMRSpectrum]]

Returns:

A signal and it’s spectrum if n_scans=1, lists of such for each scan otherwise.

class SEQ

Bases: object

Pulse(angle)

Hardware PULSE command.

Parameters:
  • phase (Literal['x+', 'y+', 'x-', 'y-']) – Phase of the pulse.

  • angle (Union[Literal[90, 180, 270, 360], float]) – Angle of the pulse. If not 90, 180, 270, or 360, treated as a duration of the pulse in us.

Return type:

HardwareEvent

ADC()

Hardware ADC command. Turns the ADC on for a specified amount of time.

Parameters:

duration_us (float) – Duration of the recording in us.

Return type:

HardwareEvent

Silence()

Hardware SILENCE command. “Sleeps” for the specified amount of time.

Parameters:

duration_us (float | None) – How long to sleep for in us. Uses the ringing time if None. Default: None.

Return type:

HardwareEvent

Cycle(sub_sequence)

Hardware CYCLE command. Repeats a sub-sequence N times.

Parameters:
  • n_repeats (int) – How many times to repeat.

  • sub_sequence (list[HardwareEvent]) – Sub-sequence to repeat.

Return type:

list[HardwareEvent]

Wobble(tau_2, tau_1)

Preset WOBBLE sub-sequence.

Equivalent to:

Pulse(x+, 180) -> Silence(TAU_2) -> Pulse(x+, 90) -> Silence(TAU_1) -> ADC(acq_time) -> Silence(TAU_1).

Parameters:
  • acq_time (float) – Acquisition time (ADC).

  • tau_2 (float) – Silence time in us between the pulses.

  • tau_1 (float | None) – Silence time in us after the pulses and ADC. Uses the ringing time if None. Default: None.

Return type:

list[HardwareEvent]

scheduled_iter(duration_hours)

An iterator that executes subsequent iterations every N minutes for M hours.

Important: The interval doesn’t “add” N minutes after the last iteration, it will only start the next one not earlier than N minutes after the last one.

Parameters:
  • interval_minutes (float) – Time spacing between iterations.

  • duration_hours (float) – For how many hours to repeat. Doesn’t abrupt the last iteration.

Return type:

Iterator[float]

class UI

Bases: object

plot(kind, save_as_output)

Plots a signal/spectrum in the UI.

Notes

  • If kind=”auto”, the data must be of type Signal or NMRspectrum.

Otherwise the appropriate kind must be provided manually.

Parameters:
  • data (Signal | NMRSpectrum | ndarray | tuple[ndarray, ndarray]) – Signal or spectrum to plot.

  • kind (Literal['signal', 'spectrum', 'auto']) – Whether the data should be treated as a signal or as a spectrum. Default: “auto”.

  • save_as_output (bool) – Whether to push the plotted data to the respective stack. Default: True.

Return type:

None

annotate(name, kind)

Plots a signal/spectrum as an annotation.

Notes

  • If kind=”auto”, the data must be of type Signal or NMRspectrum.

Otherwise the appropriate kind must be provided manually.

Parameters:
  • data (Signal | NMRSpectrum | ndarray | tuple[ndarray, ndarray]) – Signal or spectrum to plot.

  • name (str | None) – Title of the annotation. Default: None.

  • kind (Literal['signal', 'spectrum', 'auto']) – Whether the data should be treated as a signal or as a spectrum. Default: “auto”.

Return type:

None

clear_annotations()

Clears all annotations.

Parameters:

scope (Literal['all', 'signal', 'spectrum']) – Whether to clean all, signal-only, or spectrum-only annotations.

Return type:

None

user_get()

For the CUSTOM PAGE.

Retrieves a value from a custom UI input.

Return type:

Any

Parameters:

name (str)

user_plot(data)

For the CUSTOM PAGE.

Plots a signal/spectrum in the custom page UI.

Parameters:
  • id (str) – Identifier of the plot component to draw onto.

  • data (Signal | NMRSpectrum | ndarray | tuple[ndarray, ndarray]) – Signal or spectrum to plot.

Return type:

None

Internal

class DeviceSettings(p90_us=3.6, p180_us=6.8, p270_us=10, p360_us=14, ring_us=12, hahn_echo_tau=10000, echo_time=2000, frequency=19.218814, RD=200, phase_deg=90, null=0.0, tx1_gain=54, if1_analog_mhz=0.5, if1_digital_mhz=0.5, filter_val_mhz=0.1, window=120, dw_us=0.5, base=32768, dummy_shots=0, fir_type=<FIRFilterType.E_GaussType: 1>, fir_bypass=False, rx_gain=3, rx_phase=0, fft_zero_fill=-1, use_advanced_fft=True, use_apodization=False, use_phase_correction=True, use_baseline_correction=False, accumulation_mode='mean')

Bases: UpdatableSettings

Parameters:
  • p90_us (float)

  • p180_us (float)

  • p270_us (float)

  • p360_us (float)

  • ring_us (float)

  • hahn_echo_tau (float)

  • echo_time (float)

  • frequency (float)

  • RD (float)

  • phase_deg (float)

  • null (float)

  • tx1_gain (float)

  • if1_analog_mhz (float)

  • if1_digital_mhz (float)

  • filter_val_mhz (float)

  • window (int)

  • dw_us (float)

  • base (int)

  • dummy_shots (int)

  • fir_type (FIRFilterType)

  • fir_bypass (bool)

  • rx_gain (float)

  • rx_phase (float)

  • fft_zero_fill (int)

  • use_advanced_fft (bool)

  • use_apodization (bool)

  • use_phase_correction (bool)

  • use_baseline_correction (bool)

  • accumulation_mode (Literal['mean', 'sum'])

p90_us: float
p180_us: float
p270_us: float
p360_us: float
ring_us: float
hahn_echo_tau: float
echo_time: float
frequency: float
RD: float
phase_deg: float
null: float
tx1_gain: float
if1_analog_mhz: float
if1_digital_mhz: float
filter_val_mhz: float
window: int
dw_us: float
base: int
dummy_shots: int
fir_type: FIRFilterType
fir_bypass: bool
rx_gain: float
rx_phase: float
fft_zero_fill: int
use_advanced_fft: bool
use_apodization: bool
use_phase_correction: bool
use_baseline_correction: bool
accumulation_mode: Literal['mean', 'sum']
class SampleInfo(name='Dummy Sample', description='', project_name='Untitled', experiment_number_total=10, experiment_number_current=1, temperature_feature_number_total=10, temperature_feature_number_current=1, lab_feature_number_current=1, feature_temperature=35, feature_temperature_unit='°C', feature_laboratory_type='Concentration', feature_laboratory_value=20, feature_laboratory_unit='g/mol', total_mass=20, total_mass_unit='g', sample_height=120, sample_diameter=18, sample_sizes_unit='mm', temp_cur=25, temp_target=35, t1_info=<factory>, t2_info=<factory>, tune_freq=<factory>, tune_dead_time=<factory>, tune_phase=<factory>, tune_duration=<factory>, user_data=<factory>)

Bases: UpdatableSettings

Parameters:
  • name (str)

  • description (str)

  • project_name (str)

  • experiment_number_total (int)

  • experiment_number_current (int)

  • temperature_feature_number_total (int)

  • temperature_feature_number_current (int)

  • lab_feature_number_current (int)

  • feature_temperature (float)

  • feature_temperature_unit (str)

  • feature_laboratory_type (str)

  • feature_laboratory_value (float)

  • feature_laboratory_unit (str)

  • total_mass (float)

  • total_mass_unit (str)

  • sample_height (float)

  • sample_diameter (float)

  • sample_sizes_unit (str)

  • temp_cur (float)

  • temp_target (float)

  • t1_info (T1Info)

  • t2_info (T2Info)

  • tune_freq (FrequencyTuneInfo)

  • tune_dead_time (DeadTimeTuneInfo)

  • tune_phase (PhaseTuneInfo)

  • tune_duration (DurationTuneInfo)

  • user_data (dict[str, Any])

name: str
description: str
project_name: str
experiment_number_total: int
experiment_number_current: int
temperature_feature_number_total: int
temperature_feature_number_current: int
lab_feature_number_current: int
feature_temperature: float
feature_temperature_unit: str
feature_laboratory_type: str
feature_laboratory_value: float
feature_laboratory_unit: str
total_mass: float
total_mass_unit: str
sample_height: float
sample_diameter: float
sample_sizes_unit: str
temp_cur: float
temp_target: float
t1_info: T1Info
t2_info: T2Info
tune_freq: FrequencyTuneInfo
tune_dead_time: DeadTimeTuneInfo
tune_phase: PhaseTuneInfo
tune_duration: DurationTuneInfo
user_data: dict[str, Any]